2,321 research outputs found

    Ground-State Decay Rate for the Zener Breakdown in Band and Mott Insulators

    Full text link
    Non-linear transport of electrons in strong electric fields, as typified by dielectric breakdown, is re-formulated in terms of the ground-state decay rate originally studied by Schwinger in non-linear QED. We discuss the effect of electron interaction on Zener tunneling by comparing the dielectric breakdown of the band insulator and the Mott insulator, where the latter is studied by the time-dependent density-matrix renormalization group (DMRG). The relation with the Berry's phase theory of polarization is also established.Comment: 5 pages 2 figures, revised text, version to appear in Phys. Rev. Let

    Electronic states in a magnetic quantum-dot molecule: phase transitions and spontaneous symmetry breaking

    Full text link
    We show that a double quantum-dot system made of diluted magnetic semiconductor behaves unlike usual molecules. In a semiconductor double quantum dot or in a diatomic molecule, the ground state of a single carrier is described by a symmetric orbital. In a magnetic material molecule, new ground states with broken symmetry can appear due the competition between the tunnelling and magnetic polaron energy. With decreasing temperature, the ground state changes from the normal symmetric state to a state with spontaneously broken symmetry. Interestingly, the symmetry of a magnetic molecule is recovered at very low temperatures. A magnetic double quantum dot with broken-symmetry phases can be used a voltage-controlled nanoscale memory cell.Comment: 4 pages, 5 figure

    Different origin of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N

    Full text link
    The mechanism for the ferromagnetic order of (Ga,Mn)As and (Ga,Mn)N is extensively studied over a vast range of Mn concentrations. We calculate the electronic structures of these materials using density functional theory in both the local spin density approximation and the LDA+U scheme, that we have now implemented in the code SIESTA. For (Ga,Mn)As, the LDA+U approach leads to a hole mediated picture of the ferromagnetism, with an exchange constant NβN\beta =~ -2.8 eV. This is smaller than that obtained with LSDA, which overestimates the exchange coupling between Mn ions and the As pp holes. In contrast, the ferromagnetism in wurtzite (Ga,Mn)N is caused by the double-exchange mechanism, since a hole of strong dd character is found at the Fermi level in both the LSDA and the LDA+U approaches. In this case the coupling between the Mn ions decays rapidly with the Mn-Mn separation. This suggests a two phases picture of the ferromagnetic order in (Ga,Mn)N, with a robust ferromagnetic phase at large Mn concentration coexisting with a diluted weak ferromagnetic phase.Comment: 12 pages, 11 figure

    Thermoelastic Damping in Micro- and Nano-Mechanical Systems

    Get PDF
    The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometer- and nanometer-scale electro-mechanical systems (MEMS and NEMS). The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener's well-known approximation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.Comment: 10 pages. Submitted to Phys. Rev.

    Electronic Phase Separation in Manganite/Insulator Interfaces

    Full text link
    By using a realist microscopic model, we study the electric and magnetic properties of the interface between a half metallic manganite and an insulator. We find that the lack of carriers at the interface debilitates the double exchange mechanism, weakening the ferromagnetic coupling between the Mn ions. In this situation the ferromagnetic order of the Mn spins near the interface is unstable against antiferromagnetic CE correlations, and a separation between ferromagnetic/metallic and antiferromagnetic/insulator phases at the interfaces can occur. We obtain that the insertion of extra layers of undoped manganite at the interface introduces extra carriers which reinforce the double exchange mechanism and suppress antiferromagnetic instabilities.Comment: 8 pages, 7 figures include

    On the conversion efficiency of ultracold fermionic atoms to bosonic molecules via Feshbach resonances

    Full text link
    We explain why the experimental efficiency observed in the conversion of ultracold Fermi gases of 40^{40}K and 6^{6}Li atoms into diatomic Bose gases is limited to 0.5 when the Feshbach resonance sweep rate is sufficiently slow to pass adiabatically through the Landau Zener transition but faster than ``the collision rate'' in the gas, and increases beyond 0.5 when it is slower. The 0.5 efficiency limit is due to the preparation of a statistical mixture of two spin-states, required to enable s-wave scattering. By constructing the many-body state of the system we show that this preparation yields a mixture of even and odd parity pair-states, where only even parity can produce molecules. The odd parity spin-symmetric states must decorrelate before the constituent atoms can further Feshbach scatter thereby increasing the conversion efficiency; ``the collision rate'' is the pair decorrelation rate.Comment: 4 pages, 3 figures, final version accepted to Phys. Rev. Let

    Phase Diagram and Incommensurate Phases in Undoped Manganites

    Full text link
    We study the existence of incommensurate phases in the phase diagram of the two orbital double exchange model coupled with Jahn-Teller phonons and with superexchange interactions. In agreement with experimental results, we find that undoped manganites RMnO3RMnO_3 (RR being some rare earth element) show temperature induced commensurate-incommensurate phase transitions. In the incommensurate phase the magnetic wave vector varies with temperature. The incommensurate phase arises from the competition between the short range antiferromagnetic superexchange interaction and the long range ferromagnetic double exchange interaction

    A new Bloch period for interacting cold atoms in 1D optical lattices

    Full text link
    The paper studies Bloch oscillations of ultracold atoms in optical lattice in the presence of atom-atom interaction. A new, interaction-induced Bloch period is identified. The analytical results are corroborated by realistic numerical calculations.Comment: revtex4, 4 pages, 4 figures, gzipped tar fil

    Phase effects in neutrino conversions during a supernova shock wave

    Full text link
    Neutrinos escaping from a core collapse supernova a few seconds after bounce pass through the shock wave, where they may encounter one or more resonances corresponding to Δmatm2\Delta m^2_{\rm atm}. The neutrino mass eigenstates in matter may stay coherent between these multiple resonances, giving rise to oscillations in the survival probabilities of neutrino species. We provide an analytical approximation to these inevitable phase effects, that relates the density profile of the shock wave to the oscillation pattern. The phase effects are present only if the multiple resonances encountered by neutrinos are semi-adiabatic, which typically happens for 10^{-5} \lsim \sin^2 \theta_{13} \lsim 10^{-3}. The observability of these oscillations is severely limited by the inability of the detectors to reconstruct the neutrino energy faithfully. For typical shock wave profiles, the detection of these phase effects seems rather unlikely. However, if the effects are indeed identified in the \nuebar spectra, they would establish inverted hierarchy and a nonzero value of θ13\theta_{13}.Comment: 10 pages, 9 eps figures. Major changes made. Final version to be published in PR

    Effect of magnetic state on the γ−α\gamma -\alpha transition in iron: First-principle calculations of the Bain transformation path

    Full text link
    Energetics of the fcc (γ\gamma) - bcc (α\alpha) lattice transformation by the Bain tetragonal deformation is calculated for both magnetically ordered and paramagnetic (disordered local moment) states of iron. The first-principle computational results manifest a relevance of the magnetic order in a scenario of the γ\gamma - α\alpha transition and reveal a special role of the Curie temperature of α\alpha-Fe, TCT_C, where a character of the transformation is changed. At a cooling down to the temperatures T<TCT < T_C one can expect that the transformation is developed as a lattice instability whereas for T>TCT > T_C it follows a standard mechanism of creation and growth of an embryo of the new phase. It explains a closeness of TCT_C to the temperature of start of the martensitic transformation, MsM_s.Comment: 4 pages, 3 figures, submitted in Phys. Rev. Letter
    • …
    corecore